Hybrid Organic-Inorganic Perovskites on the Move.

نویسندگان

  • David A Egger
  • Andrew M Rappe
  • Leeor Kronik
چکیده

Hybrid organic-inorganic perovskites (HOIPs) are crystals with the structural formula ABX3, where A, B, and X are organic and inorganic ions, respectively. While known for several decades, HOIPs have only in recent years emerged as extremely promising semiconducting materials for solar energy applications. In particular, power-conversion efficiencies of HOIP-based solar cells have improved at a record speed and, after only little more than 6 years of photovoltaics research, surpassed the 20% threshold, which is an outstanding result for a solution-processable material. It is thus of fundamental importance to reveal physical and chemical phenomena that contribute to, or limit, these impressive photovoltaic efficiencies. To understand charge-transport and light-absorption properties of semiconducting materials, one often invokes a lattice of ions displaced from their static positions only by harmonic vibrations. However, a preponderance of recent studies suggests that this picture is not sufficient for HOIPs, where a variety of structurally dynamic effects, beyond small harmonic vibrations, arises already at room temperature. In this Account, we focus on these effects. First, we review structure and bonding in HOIPs and relate them to the promising charge-transport and absorption properties of these materials, in terms of favorable electronic properties. We point out that HOIPs are much "softer" mechanically, compared to other efficient solar-cell materials, and that this can result in large ionic displacements at room temperature. We therefore focus next on dynamic structural effects in HOIPs, going beyond a static band-structure picture. Specifically, we discuss pertinent experimental and theoretical findings as to phase-transition behavior and molecular/octahedral rearrangements. We then discuss atomic diffusion phenomena in HOIPs, with an emphasis on the migration of intrinsic and extrinsic ionic species. From this combined perspective, HOIPs appear as highly dynamic materials, in which structural fluctuations and long-range ionic motion have an unusually strong impact on charge-transport and optical properties. We highlight the potential implications of these effects for several intriguing phenomenological observations, ranging from scattering mechanisms and lifetimes of charge carriers to light-induced structural effects and ionic conduction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Organic−Inorganic Perovskites on the Move Published as part of the Accounts of Chemical Research special issue “Lead Halide Perovskites for Solar Energy Conversion”

Published as part of the Accounts of Chemical Research special issue “Lead Halide Perovskites for Solar Energy Conversion”. David A. Egger,*,† Andrew M. Rappe,*,‡ and Leeor Kronik*,† †Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel ‡The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania...

متن کامل

Decreasing the electronic confinement in layered perovskites through intercalation.

We show that post-synthetic small-molecule intercalation can significantly reduce the electronic confinement of 2D hybrid perovskites. Using a combined experimental and theoretical approach, we explain structural, optical, and electronic effects of intercalating highly polarizable molecules in layered perovskites designed to stabilize the intercalants. Polarizable molecules in the organic layer...

متن کامل

Photodetectors Based on Organic–Inorganic Hybrid Lead Halide Perovskites

Recent years have witnessed skyrocketing research achievements in organic-inorganic hybrid lead halide perovskites (OIHPs) in the photovoltaic field. In addition to photovoltaics, more and more studies have focused on OIHPs-based photodetectors in the past two years, due to the remarkable optoelectronic properties of OIHPs. This article summarizes the latest progress in this research field. To ...

متن کامل

An extended Tolerance Factor approach for organic-inorganic perovskites.

Goldschmidt's concept of ionic Tolerance Factors was recently shown to be a valuable guideline for the preparation of new compounds within the field of organic-inorganic perovskites. Here, we extend this approach and calculate Tolerance Factors for over 2500 amine-metal-anion permutations of the periodic table. The results suggest the potential existence of more than 600 undiscovered hybrid per...

متن کامل

Pressure-induced dramatic changes in organic–inorganic halide perovskites

Organic-inorganic halide perovskites have emerged as a promising family of functional materials for advanced photovoltaic and optoelectronic applications with high performances and low costs. Various chemical methods and processing approaches have been employed to modify the compositions, structures, morphologies, and electronic properties of hybrid perovskites. However, challenges still remain...

متن کامل

Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges.

The conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Accounts of chemical research

دوره 49 3  شماره 

صفحات  -

تاریخ انتشار 2016